• 講義要項やWebシラバスの記載内容は、登録された受講生の人数や理解度に応じて、授業開始後に変更となる可能性があります。

main start


開講年度 2019年度 開講箇所 基幹理工学部
Calculus B (1)

English-based Undergraduate Program

担当教員 ボーウェン マーク
学期曜日時限 冬クォーター  01:月2時限/02:水5時限
科目区分 数学 配当年次 1年以上 単位数 2
使用教室 01:61-206教室/02:61-206教室 キャンパス 西早稲田(旧大久保)
科目キー 26M0210002 科目クラスコード 01
授業で使用する言語 英語
  コース・コード MATX13ZL
大分野名称 数学
中分野名称 数学
小分野名称 解析学
レベル 初級レベル(入門・導入) 授業形態 講義


最終更新日時:2019/02/20 14:02:23

This is an introductory calculus course taught in English.  

Calculus B covers multi-variable differential calculus and assumes previous study of single variable calculus.  We will also consider applications of the results to various fields of science and engineering.

This course also aims to increase the students' academic/scientific English vocabulary.
授業の到達目標 Learning Goals:

1) Gain an understanding of methods of (primarily) multi-variable differential calculus

2) Understand how to apply methods from multi-variable differential calculus to solving problems arising in applications.

3) Expand English language science/engineering vocabulary
事前・事後学習の内容 Students should review their notes after every class.
授業計画 Week 1

27th November: Power series
2nd December: Taylor polynomial and Taylor series

Week 2

December 4th: Objects in 3-dimensional space
December 9th: Parametric paths

Week 3

December 11th: Functions of several variables
December 16th: Partial derivatives

Week 4

December 18th: Multi-variable chain-rules
December 23rd: Normals to curves

Week 5

January 6th: Directional derivatives
January 8th: Example class 1

Week 6

January 15th: Normals to surfaces
January 20th: Extrema 1

Week 7

January 22nd: Extrema 2
January 27th: Lagrange multipliers

Week 8

January 29th: Examples class 2
February 3rd: Final Exam and review
教科書 There is no assigned textbook for this course.
参考文献 The lecturer will talk about recommended reference texts in the first class.
割合 評価基準
試験: 70% In-class examination -- the in-class examination will take place during the final class in the regular class period.
その他: 30% Continuous assessment (Quizzes, homework and so on)
備考・関連URL In general, late homework will not be accepted.  if you are late turning in a homework due to special circumstances such as illness, emergencies, or public transportation problems, please see me.


Copyright © Media Network Center,Waseda University 2006-2019.All rights reserved.