• 講義要項やWebシラバスの記載内容は、登録された受講生の人数や理解度に応じて、授業開始後に変更となる可能性があります。

main start


開講年度 2019年度 開講箇所 グローバルエデュケーションセンター
Machine Learning for Advanced Integrated Intelligence β


担当教員 朝日 透/谷口 卓也/ザオ チビン/神長 伸幸
学期曜日時限 集中講義(春学期)  土その他
科目区分 ユニバーシティ・スタディーズ科目 配当年次 1年以上 単位数 1
使用教室 ホール キャンパス 日本橋
科目キー 9S91010032 科目クラスコード 01
授業で使用する言語 英語
  コース・コード INFI612S
大分野名称 情報学
中分野名称 知的システム
小分野名称 一般
レベル 修士レベル 授業形態 演習/ゼミ


最終更新日時:2019/04/04 21:11:52

副題 Intermediate class of Machine Learning for Airtificial Intelligence

This classwill provide the advanced knowledge of science and technology of artificialintelligence to students who have acquired the basic knowledgeof machine learning. Thelevel of class will be medium-high. The class will be offered in collaborationwith AIP (Advanced Intelligent Project). The language of the instruction is English.

授業の到達目標 This class aims to master the advanced knowledge and techniques of artificial intelligence.
事前・事後学習の内容 Read pre-work items in advance before each lecture when they are indicated by faculties. Reports about lessons learned at the lecture are submitted to the faculties at the classroom or through Course-N@vi system.

1st  May 11/13:00-14:30, Introduction, Takuya Taniguchi

2nd  May 11/14:45-16:15, Machine Learning as Application for Analyzing Eye Movement Data 1, Nobuyuki Jincho, Takuya Taniguchi 

3rd  May 18/13:00-14:30, Machine Learning as Application for Analyzing Eye Movement Data 2, Nobuyuki Jincho,  Takuya Taniguchi

4th  May 18/14:45-16:15, Machine Learning as Application for Analyzing Eye Movement Data 3, Nobuyuki Jincho,  Takuya Taniguchi

5th  May 25/13:00-14:30, Multilinear Algebra andTensor Decompositions, Qibin Zhao, Takuya Taniguchi

6th  May 25/14:45-16:15, Tensor Networks, Qibin Zhao, Takuya Taniguchi

7th  June 1/13:00-14:30, Tensor Methods for Signal Processing and Machine Learning, Qibin Zhao, Takuya Taniguchi

8th  June 1/14:45-16:15, Exam, Takuya Taniguchi

割合 評価基準
試験: 40% In the final day, the students must take the examination to get the credit.
レポート: 30% The students must submit the report for issues, which are indicated by faculty members, to them.
平常点評価: 20% The on-site contribution to the class is evaluated.


Copyright © Media Network Center,Waseda University 2006-2019.All rights reserved.