cheader

シラバス詳細照会

シラバス詳細照会

  • 講義要項やWebシラバスの記載内容は、登録された受講生の人数や理解度に応じて、授業開始後に変更となる可能性があります。

main start

授業情報

開講年度 2018年度 開講箇所 グローバルエデュケーションセンター
科目名
Machine Learning for Advanced Integrated Intelligence γ

合併_主管_【大学院-学部】

担当教員 朝日 透/戸川 望/丸山 祐丞/カーン ムハンマド エムティアス/山田 誠/山本 陽一朗/大武 美保子/浜中 雅俊
学期曜日時限 集中講義(春学期)  土その他
科目区分 ユニバーシティ・スタディーズ科目 配当年次 1年以上 単位数 2
使用教室 01:ビジネスセンター(印刷/作業) キャンパス 日本橋
科目キー 9S91010033 科目クラスコード 01
授業で使用する言語 英語
  コース・コード INFI613S
大分野名称 情報学
中分野名称 知的システム
小分野名称 一般
レベル 修士レベル 授業形態 演習/ゼミ
  オープン科目

シラバス情報

最終更新日時:2018/05/15 18:50:41

副題 Advanced class of Machine Learning for Airtificial Intelligence
授業概要

Thiscourse will provide advanced knowledge of science and technology ofartificial intelligence to have students qualified to understand thecurrent cutting edge study of machine learning technologies and dotheir own new research as AIP has been doing. The class will beoffered in collaboration with AIP (Advanced Intelligent Project). Thelanguage of the instruction is English except 9th, 10th, and 11thlecture.

授業の到達目標 students qualified to understand the current cutting edge study of machine learning technologies and do their own new research as AIP has been doing.
事前・事後学習の内容 Contact Information: Toru Asahi (tasahi@waseda.jp)
授業計画
1:
1st lecture (6/23 14:00-15:30) @Waseda 29 Building 302

Basicsof Approximate Bayesian Inference

Emtiyaz Khan, Yusuke Maruyama,ToruAsahi,Nozomu Togawa

2:
2nd lecture (6/23 16:00-17:30) @Waseda 29 Building 302

BayesianDeep Learning

Emtiyaz Khan, Yusuke Maruyama

3:
3rd (6/30 14:00-15:30) @Nihonbashi Campus Hall

Interactivemusic system

MasatoshiHamanaka, Yusuke Maruyama

4:
4th lecture (6/30 16:00-17:30) @Nihonbashi Campus Hall

Musicanalysis and its applicatio

MasatoshiHamanaka, Yusuke Maruyama

5:
5th lecture (7/7 14:00-15:30) @Nihonbashi Campus Hall

FeatureSelection

MakotoYamada, Yusuke Maruyama

6:
6th lecture (7/7 16:00-17:30) @Nihonbashi Campus Hall

TransferLearning

MakotoYamada,Yusuke Maruyama

7:
7th lecture (7/21 14:00-15:30) @Nihonbashi Campus Hall

Density-RatioEstimation

MakotoYamada,Yusuke Maruyama

8:
8th lecture (7/21 16:00-17:30) @Nihonbashi Campus Hall

Automatic composition system

MasatoshiHamanaka,Yusuke Maruyama

9:
9th lecture (7/28 14:00-15:30) @Nihonbashi Campus Hall

MedicalApplications of Artificial Intelligence(1)

YoichiroYamamoto,YusukeMaruyama

10:
10th lecture (7/28 16:00-17:30) @Nihonbashi Campus Hall

MedicalApplications of Artificial Intelligence(2)

YoichiroYamamoto,YusukeMaruyama

11:
11th (8/4 14:00-15:30) @Waseda 29 Building 302

MedicalApplications of Artificial Intelligence(3)

YoichiroYamamoto,YusukeMaruyama

12:
12th (8/4 16:00-17:30) @Waseda 29 Building 302

Cognitivebehavioral assistive technology: Lecture

MihokoOtake,YusukeMaruyama

13:
13th (8/11 14:00-15:30)

Conversationassistive robots:Demonstration

MihokoOtake,YusukeMaruyama

14:
14th (8/11 16:00-17:30)

AIfor improving quality of life: Discussion

MihokoOtake,YusukeMaruyama

15:
15th (8/11 18:00-19:30)
Examination
Yusuke Maruyama
成績評価方法
割合 評価基準
試験: 40% In the final day, the students must take the examination to get the credit.
レポート: 30% The students must submit the report for issues, which are indicated by faculty members, to them.
平常点評価: 20% The on-site contribution to the class is evaluated.
備考・関連URL

ContactInformation: Toru Asahi (tasahi@waseda.jp)

ページの先頭へ戻る

Copyright © Media Network Center,Waseda University 2006-2019.All rights reserved.

read