cheader

シラバス詳細照会

シラバス詳細照会

  • 講義要項やWebシラバスの記載内容は、登録された受講生の人数や理解度に応じて、授業開始後に変更となる可能性があります。

main start

授業情報

開講年度 2019年度 開講箇所 グローバルエデュケーションセンター
科目名
Machine Learning for Advanced Integrated Intelligence γ

合併_主管_【大学院-学部】

担当教員 朝日 透/丸山 祐丞/山田 誠/大武 美保子/横矢 直人
学期曜日時限 集中講義(春学期)  土その他
科目区分 ユニバーシティ・スタディーズ科目 配当年次 1年以上 単位数 2
使用教室 ホール キャンパス 日本橋
科目キー 9S91010033 科目クラスコード 01
授業で使用する言語 英語
  コース・コード INFI613S
大分野名称 情報学
中分野名称 知的システム
小分野名称 一般
レベル 修士レベル 授業形態 演習/ゼミ
  オープン科目

シラバス情報

最終更新日時:2019/04/01 10:35:48

副題 Advanced class of Machine Learning for Airtificial Intelligence
授業概要

Thisclass will give more practical training opportunities to students who areinterested in cutting edge studies of machine learning. The class will be offeredin collaboration with AIP (Advanced Intelligent Project, Riken). The languageof the instruction is English.

授業の到達目標 This class aims to make students understand cutting edge studies of machine learning technologies.
事前・事後学習の内容 Read pre-work items in advance before each lecture when they are indicated by faculties. Reports about lessons learned at the lecture are submitted to the faculties at the classroom or through Course-N@vi system.
授業計画

1st  June 8/13:00-14:30, Cognitive behavioral support technology: Lecture, Mihoko Otake, TakuyaTaniguchi

2nd June 8/14:45-16:15,Conversation support robots: Demonstration, Mihoko Otake, Takuya Taniguchi

3rd  June 15/13:00-14:30,AI for improving quality of life: Discussion, Mihoko Otake, Takuya Taniguchi

4th  June 15/14:45-16:15, Introduction ofremote sensing and its applications, Naoto Yokoya, Takuya Taniguchi

5th  June 22/13:00-14:30, Image and signalprocessing for remote sensing, Naoto Yokoya, Takuya Taniguchi 

6th  June 22/14:45-16:15, Machine learning forremote sensing data, Naoto Yokoya, Takuya Taniguchi

7th  June 29/13:00-14:30,Feature Selection, Makoto Yamada, Takuya Taniguchi

8th  June 29/14:45-16:15,Transfer Learning, Makoto Yamada, Takuya Taniguchi

9th  July 6/13:00-14:30,Density-Ratio Estimation, Makoto Yamada, Takuya Taniguchi

10th July 6/14:45-16:15,Introduction for encryption, Yusuke Maruyama, Takuya Taniguchi

11th  July 13/13:00-14:30,Basic of lattice, Yusuke Maruyama, Takuya Taniguchi

12th  July 13/14:45-16:15,Encryption scheme for lattice encryption, YusukeMaruyama, Takuya Taniguchi

13th  July 20/13:00-14:30,Fully homomorphic encryption, Yusuke Maruyama, Takuya Taniguchi

14th  July 20/14:45-16:15,Machine learning over encrypted data, Yusuke Maruyama,Takuya Taniguchi

15th  July 27/13:00-14:30,Exam, Takuya Taniguchi

成績評価方法
割合 評価基準
試験: 40% In the final day, the students must take the examination to get the credit.
レポート: 30% The students must submit the report for issues, which are indicated by faculty members, to them.
平常点評価: 20% The on-site contribution to the class is evaluated.
備考・関連URL


ページの先頭へ戻る

Copyright © Media Network Center,Waseda University 2006-2019.All rights reserved.

read